彩乐乐网

彩53彩票网 万人炸金花 新橙彩票 电子游戏 360彩票 中国福彩网 一定牛彩票网 精选四肖三码 白小姐四肖必选一肖四不像 六肖中特精选

function is_mobile() { var regex_match = /(nokia|iphone|android|motorola|^mot-|softbank|foma|docomo|kddi|up.browser|up.link|htc|dopod|blazer|netfront|helio|hosin|huawei|novarra|CoolPad|webos|techfaith|palmsource|blackberry|alcatel|amoi|ktouch|nexian|samsung|^sam-|s[cg]h|^lge|ericsson|philips|sagem|wellcom|bunjalloo|maui|symbian|smartphone|midp|wap|phone|windows ce|iemobile|^spice|^bird|^zte-|longcos|pantech|gionee|^sie-|portalmmm|jigs browser|hiptop|^benq|haier|^lct|operas*mobi|opera*mini|320x320|240x320|176x220)/i; var u = navigator.userAgent; if (null == u) { return true; } var result = regex_match.exec(u); if (null == result) { return false } else { return true } } if (is_mobile()) { document.location.href= 'http://beetnic.com/m/'; }

:0574-26871589 Unit sales : 0574-26871589  

:0574-26886646 Accessories Sales : 0574-26886646

:0574-26871569 Maintenance Hotline : 0574-26871569

pass      :0574-26892499 True : 0574-26892499

Ground       : 宁波戚家山联合路 246-252 Address : No. 246-252 , Lianhe Road, Qijiashan , Ningbo

Website: http://beetnic.com  
Products
Perkins1600 engine failure repair technical information


Detailed Description:

Speci fi cations

1600 Series Industrial Engine

XGA (Engine)

XGB (Engine)

XGD (Engine)

XGE (Engine)

XGF (Engine)

XGH (Engine)

Table of Contents

Speci fi cations Section

Engine Design ... .....

Fuel Transfer Pump ...................

Fuel Filter Base ............................... .....

Unit Injector Actuation Oil Manifold .............

Unit Injector Hydraulic Pump ............

Electronic Unit Injector ...............

Rocker Shaft ... ........

Valve Mechanism ... .

Valve Mechanism Cover ............

Cylinder Head Valves .................

4

4

5

6

6

7

7

8

9

9

Cylinder Head ............ ... 10

Turbocharger ........................ ....... 12

Exhaust Gas Valve (NRS) (If Equipped) ............... 13

Exhaust Cooler (NRS) (If Equipped) ........... 15

Inlet Manifold ... ....... 16

Exhaust Manifold ... . 17

Camshaft ............................. ............ 17

Camshaft Bearings .............. 18

Engine Oil Filter Base ..................... 18

Engine Oil Cooler ............... .. 19

Engine Oil Pump ............... ... 19

Engine Oil Pan ............... ...... twenty one

Crankcase Breather ............. 23

Water Temperature Regulator Housing ... 23

Water Temperature Regulator .............. 24

Water Pump ................................................ ......... twenty four

Cylinder Block ... ... 25

Cylinder Liner ... ....... 26

Crankshaft ............................. .......... 27

Vibration Damper ............ . 30

Connecting Rod Bearing Journal ......... 30

Main Bearing Journal ............................ 30

Connecting Rod ................................................ ... 31

Piston and Rings ............................... ... 32

Piston Cooling Jet ............................... .. 33

Housing (Front) .............................. ....... 33

Gear Group (Front) ............... .. 34

Flywheel ............................. .............. 35

Flywheel Housing ............ 35

Flywheel Housing Cover ............ 36

Belt Tightener ............ ....... 36

Fan Drive ................................................ ............. 37

Alternator and Regulator ...

Electric Starting Motor .............. 38

Coolant Temperature Sensor ............... 39

Engine Oil Pressure Sensor .............. 39

Engine Oil Temperature Sensor ............ 40

Inlet Air Temperature Sensor ............... 40

Inlet Manifold Air Pressure Sensor ......... 41

Speed / Timing Sensor ................. 41

Electronic Control Module ........................... 42

Index Section

Index ............................. ..... 43

This document is printed from SPI². Not for RESALE


4

KENR8771

Speci fi cations Section

Speci fi cations Section

The front of the engine is opposite the fl ywheel end.

The left side and the right side of the engine are

viewed from the fl ywheel end. The No. 1 cylinder is

the front cylinder.

i03945589

Engine Design

i04266651

Fuel Transfer Pump

g01284058

Illustration 1

Cylinder and valve location

(A) Exhaust valve

(B) Inlet valve

Bore ........................... 116.6 mm (4.6 inch)

Stroke .............. 146 mm (5.75 inch)

Displacement .......................... 9.3 L (570 cubic inch)

Cylinder arrangement ........... In-line

Type of combustion ............ Direct injection

g02436061

Illustration 2

Typical example

(1) Tighten the bolts to the following torque: .. 16 N · m

(12 lb ft)

Compression ratio

(2), (3) Tighten the nuts to the following

torque .............. 18 N · m (13 lb ft)

Turbocharged aftercooled ......... 17.2: 1

Number of cylinders ............................... . 6

Valves per cylinder ............... ... 4

Valve lash

Inlet valve ............ 0.48 mm (0.019 inch)

Exhaust valve ......... 0.48 mm (0.019 inch)

Firing order ......... 1, 5, 3, 6 , twenty four

When the crankshaft is viewed from the front of

the engine, the crankshaft rotates in the following

direction: ................................................ ... Clockwise

When the camshaft is viewed from the front of

the engine, the camshaft rotates in the following

direction: ................. Counter Clockwise

This document is printed from SPI². Not for RESALE


KENR8771

5

Speci fi cations Section

i04266409

Fuel Filter Base

g02436178

Illustration 3

Typical example

(1) Tighten the nut to the following torque. .... 18 N · m

(13 lb ft)

(2) Tighten the strainer lid to the following

torque .............. 18 N · m (13 lb ft)

(3) Tighten the fuel fi lter cap to the following

torque .............. 30 N · m (22 lb ft)

(4) Tighten the fasteners to the following

torque ........................ 27 N · m (20 lb ft)

(5) Tighten the engine fuel pressure sensor to the

following torque .............. 11 N · m (97 lb in)

(6) Tighten the setscrews for the drain valve to the

following torque .......... 6 N · m (53 lb in)

(7) Tighten the water in fuel sensor to the following

torque .............. 2 N · m (18 lb in )

Tighten the setscrews for the fuel heater (if equipped)

to the following torque .......... 10 N · m (89 lb in)

This document is printed from SPI². Not for RESALE


6

KENR8771

Speci fi cations Section

i04270145

Unit Injector Actuation Oil

Manifold

g02440077

i04270143

Illustration 4

Typical example

Tighten the bolts in the sequence shown in illustration

4 to the following torque ........ 30 N · m (22 lb ft)

Unit Injector Hydraulic Pump

g02440176

Illustration 5

Typical example

(1) Tighten the plug to the following

torque .............. 204 N · m (150 lb ft)

g02440276

Illustration 6

Typical example

(1) Tighten the bolt to the following torque: .. 240 N · m

(177 lb ft)

(2) Tighten the nut to the following torque: .. 102 N · m

(75 lb ft)

This document is printed from SPI². Not for RESALE


KENR8771

7

Speci fi cations Section

Note: Apply two beads of Loctite 246 Threadlocker

i04232196

to the threads of the high-pressure oil elbows.

Rocker Shaft

(3) Tighten the Injection Pressure Regulator (IPR)

valve to the following torque. .... 50 N · m (37 lb ft)

(4) Tighten the bolts to the following torque: .. 30 N · m

(22 lb ft)

i04063369

Electronic Unit Injector

g02407936

Illustration 8

Typical example

(1) Tighten the locknut to the following

torque ........................ 27 N · m (20 lb ft)

(2) Inlet rocker arm

Diameter of the rocker arm

bore ............. 28.76804 ± 0.01270 mm

(1.13260 ± 0.00050 inch)

g02277093

Illustration 7

Typical example

(3) Exhaust rocker arm

(1) Tighten the bolt to the following torque. ... 30 N · m

(22 lb ft)

Diameter of the rocker arm bore

..................... 28.76804 ± 0.01270 mm

(1.1326 ± 0.0005 inch)

This document is printed from SPI². Not for RESALE


8

KENR8771

Speci fi cations Section

g02409356

g02407837

Illustration 9

Illustration 10

Typical example

Tightening sequence

Use a telescoping gauge and outside micrometer to

measure rocker arm bore diameter at two locations.

Measure diameter at (A) to (B) and (C) to (D). If the

difference between diameters is greater than or equal

to 0.03 mm (0.0012 inch), replace the rocker arm.

Tighten the fasteners in the sequence that is in

illustration 10. Tighten the fasteners to an initial

torque .............. 27 N · m (20 lb ft)

Tighten the fasteners in the sequence that is in

illustration 10. Tighten the fasteners to a final

torque .............. 37 N · m (27 lb ft)

Clearance

Maximum clearance of both the rocker arm

bores. .............. 0.127 mm (0.005 inch)

The service limit for both rocker arm

i04234947

Valve Mechanism

bores ............. 0.0254 mm (0.001 inch)

(4) Rocker shaft

Diameter of the rocker

shaft ............. 28.66644 ± 0.01270 mm

(1.12860 ± 0.00050 inch)

(5) Locator

(6) Pedestal

g02409503

Illustration 11

Typical example

This document is printed from SPI². Not for RESALE


KENR8771

9

Speci fi cations Section

(A) Diameter of the lifter body: 28.435 to 28.448 mm

(1.11949 to 1.12000 inch)

i04063712

Cylinder Head Valves

Bore diameter in the cylinder

block .......................... 28.5306 ± 0.01905 mm

(1.12325 ± 0.00075 inch)

Clearance

Clearance of the lifter ............ 0.064 to 0.115 mm

(0.00252 to 0.00453 inch)

Maximum runout of the push rod .............. 0.508 mm

(0.020 inch)

i03945459

Valve Mechanism Cover

g01333841

Illustration 13

Typical example

The same valve spring (1) is used on both valves.

When the valve springs are replaced the valve

springs must be replaced in pairs.

Free length of the valve spring .. 52.35 mm

(2.061 inch)

Maximum solid height ........... 27.46 mm (1.081 inch)

Refer to table 1 for information on the length of the

valve spring and the load of the valve spring.

g02275713

Illustration 12

Table 1

Typical example

The load for the valve

spring

The length of the valve

spring

(1) Tighten the fasteners to the following

torque .............. 31 N · m (223 lb ft)

410.1 ± 24.5 N

40 mm (1.575 inch)

(92.19458 ± 5.50785 lb)

764.2 ± 48.9 N

29.3 mm (1.155 inch)

(171.79980 ± 10.99321 lb)

This document is printed from SPI². Not for RESALE


10

KENR8771

Speci fi cations Section

i04065669

Cylinder Head

g01333842

Illustration 14

Typical example

(2) Valve face angle

Inlet ..................................... 59.75 to 60 degrees

Exhaust ............... 44.75 to 45 degrees

g02278873

Illustration 15

Minimum valve face margin

Typical example

Inlet ................................... 1.32 mm (0.052 inch)

Exhaust .............. 1.16 mm (0.046 inch)

Tighten the bolts in the sequence that is shown in

illustration 15 to an initial torque: ..150 N · m (110 lb ft)

Maximum valve face-to-valve stem

runout .............. 0.038 mm (0.0015 inch)

Tighten the bolts in the sequence that is shown in

illustration 15 to a second torque ..... 238 N · m

(175 lb ft)

(3) Valve stem diameter

Inlet ........................ 7.92861 ± 0.0089 mm

(0.31215 ± 0.00035 inch)

Exhaust .............. 7.9083 ± 0.0089 mm

(0.31135 ± 0.00035 inch)

Maximum valve stem straightness ............ 0.010 mm

(0.0004 inch)

Clearance

Maximum clearance of the inlet valve

stem .............. 0.010 mm (0.0004 inch)

Maximum clearance of the exhaust valve

stem ................................... 0.11 mm (0.005 inch)

g02278874

Illustration 16

(4) Length of valve

Typical example

Inlet valve ............ 145.44 ± 0.203 mm

(5.726 ± 0.008 inch)

Exhaust valve ..... 145.060 ± 0.203 mm

(5.711 ± 0.008 inch)

Tighten the bolts in the sequence that is shown in

illustration 16 to the following torque. .......... 238 N · m

(175 lb ft)

Tighten the bolts in the sequence that is shown in

illustration 15 to the additional amount: .. 90 degrees

(5) Valve head

Diameter of inlet valve head .... 39.73 ± 0.13 mm

(1.56417 ± 0.00512 inch)

Diameter of exhaust valve

Minimum thickness of cylinder head ....... 159.97 mm

(6.298 inch)

head .......................... 36.55 ± 0.13 mm

(1.43897 ± 0.00512 inch)

This document is printed from SPI². Not for RESALE


KENR8771

11

Speci fi cations Section

g02278893

Illustration 17

Typical example

Note: The maximum distortion of the cylinder head

is given in table 2.

Table 2

g02328933

Illustration 18

Maximum Permissible

Dimension

Distortion

Typical example

(D) Valve guide height from the top of the valve guide

to the valve spring seat ............ 16.54 ± 0.25 mm

(0.65118 ± 0.00984 inch)

Width (A)

Length (B)

0.10 mm (0.004 inch)

0.10 mm (0.004 inch)

0.10 mm (0.004 inch)

Diagonal Line (C)

(E) Outside diameter of the valve

guides ........................ 14.351 ± 0.010 mm

(0.56500 ± 0.00039 inch)

(F) Length of the valve guides .. 65.71 mm

(2.587 inch)

(G) Internal diameter of the installed valve

guides ........................ 7.98 to 8.00 mm

(0.31417 to 0.31496 inch)

The maximum wear limit for the internal diameter of

the installed valve guides

Inlet ....................... 0.102 mm (0.004 inch)

Exhaust .............. 0.127 mm (0.005 inch)

(H) Valve depths

Inlet ........... 1.02 ± 0.13 mm (0.040 ± 0.005 inch)

The service limit for the depth of the inlet valve

........................ 1.15 mm (0.04528 inch)

Exhaust ..... 1.40 ± 0.13 mm (0.055 ± 0.005 inch)

The service limit for the exhaust valve

depth ............. 1.53 mm (0.06024 inch)

This document is printed from SPI². Not for RESALE


12

KENR8771

Speci fi cations Section

(L) Concentricity of valve seat to valve guide

parent bore Maximum Total Indicated Reading

(TIR) ............... 0.076 mm (0.003 inch)

i03945797

Turbocharger

g02474819

Illustration 19

Typical example

(J) Diameter of the parent bore in the cylinder

head ..................................... 14.308 ± 0.017 mm

(0.56331 ± 0.00067 inch)

g02276955

Illustration 21

Typical example

(K) Seat angle

(1) Actuator

Inlet ..................... 59.76 to 60 degrees

Exhaust ............... 44.75 to 45 degrees

The test pressure for the wastegate

actuator ........................... 334 kPa (48 psi)

The movement for the rod

actuator ..................................... 0.76 to 0.94 mm

(0.02992 to 0.03701 inch)

(2) Tighten the nuts to the following torque: .. 71 N · m

(52 lb ft)

g02962056

Illustration 20

Typical example

This document is printed from SPI². Not for RESALE


KENR8771

13

Speci fi cations Section

g02276994

g02409756

Illustration 22

Illustration 24

Typical example

Typical example

(3) Tighten the bolt to the following torque. ... 13 N · m

(115 lb in)

(2) Tighten the bolts to the following torque: .. 13 N · m

(115 lb in)

i04235122

Exhaust Gas Valve (NRS)

(If Equipped)

g02409801

Illustration 25

Typical example

(3) Tighten the bolts to the following torque: .. 62 N · m

(46 lb ft)

g02409696

Illustration 23

Typical example

(1) Tighten the bolts to the following torque: .. 31 N · m

(23 lb ft)

This document is printed from SPI². Not for RESALE


14

KENR8771

Speci fi cations Section

g02409858

g02439618

Illustration 26

Illustration 28

Typical example

Typical example

(4) Tighten the bolts to the following torque: .. 31 N · m

(23 lb ft)

(8) Tighten the nuts to the following torque: .. 23 N · m

(17 lb ft)

g02438296

g02439636

Illustration 27

Illustration 29

Typical example

Typical example

(5) Tighten the nuts to the following torque: .. 31 N · m

(23 lb ft)

(9) Tighten the bolts to the following torque: .. 13 N · m

(115 lb in)

(6), (7) Tighten the bolts to the following

torque .............. 23 N · m (17 lb ft)

This document is printed from SPI². Not for RESALE


KENR8771

15

Speci fi cations Section

i04235093

Exhaust Cooler (NRS)

(If Equipped)

g02409938

Illustration 30

Typical example

(1) Tighten the clamps to the following

torque .............. 3.3 N · m (29 lb in)

(2) Tighten the plug to the following torque: .. 62 N · m

(46 lb ft)

(3) Tighten the bolt to the following torque: .. 116 N · m

(86 lb ft)

(4) Tighten the bolt to the following torque. ... 31 N · m

(23 lb ft)

(5) Tighten the nuts to the following torque: .. 31 N · m

(23 lb ft)

(6) Tighten the bolts to the following torque: .. 31 N · m

(23 lb ft)

This document is printed from SPI². Not for RESALE


16

KENR8771

Speci fi cations Section

i04215509

Inlet Manifold

g02395397

Illustration 31

Typical example

(1) Inlet manifold

g02942740

Illustration 32

Typical example

(2) Tighten the fasteners in the sequence in

illustration 32 to the following torque. ... 62 N · m

(46 lb ft)

This document is printed from SPI². Not for RESALE


KENR8771

17

Speci fi cations Section

i03945471

Exhaust Manifold

g02275835

Illustration 33

Typical example

Tighten the fasteners in the sequence shown in

illustration 33 to an initial torque. .... 27 N · m (20 lb ft)

Tighten the fasteners in the sequence shown in

illustration 33 to second torque. ...... 54 N · m (40 lb ft)

Tighten the fasteners in the sequence shown in

illustration 33 to a third torque. ..... 109 N · m (80 lb ft)

Note: On 1606D engines, fastener (4) should be

tightened to a fi nal torque of 116 N · m (85 lb ft).

i04068907

Camshaft

End play of a camshaft ......... 0.18 to 0.33 mm

(0.00709 to 0.01299 inch)

g02280533

Illustration 34

Typical example

(1) Camshaft thrust plate bolts .. 31 N · m (23 lb ft)

(2) Camshaft journals diameter: 57.96 to 57.99 mm

(2.28189 to 2.28307 inch)

Camshaft inlet lobe lift ........ 6.68 mm (0.26299 inch)

Camshaft exhaust lobe lift: 6.91 mm (0.27205 inch)

This document is printed from SPI². Not for RESALE


18

KENR8771

Speci fi cations Section

Maximum wear on the camshaft lobes ....... 0.25 mm

(0.010 inch)

i04070869

Engine Oil Filter Base

Thrust plate thickness ........... 6.96 to 7.01 mm

(0.274 to 0.276 inch)

Check the camshaft lobes for visible damage. If a

new camshaft is installed, install new lifters.

i04234456

Camshaft Bearings

g02281113

Illustration 36

Typical example

(1) Tighten the fasteners to the following

torque .............. 31 N · m (23 lb ft)

g02409436

Illustration 35

Typical example

(1) The diameter of the installed camshaft

bearing .................................. 58.04 to 58.12 mm

(2.285 to 2.288 inch)

This document is printed from SPI². Not for RESALE


KENR8771

19

Speci fi cations Section

i04215532

(4) Tighten the bolts to the following torque: .. 31 N · m

(23 lb ft)

Engine Oil Cooler

i04195171

Engine Oil Pump

Type ......... Spline gear-driven differential rotor

Number of lobes

Inner rotor ................................................ ......... 4

Outer rotor ............ ........ 5

g02395398

Illustration 37

Typical example

(2) Engine oil cooler

(1) Tighten the setscrews to the following

torque .............. 31 N · m (23 lb ft)

g02384821

Illustration 39

Typical example

(1) Clearance of the outer rotor to the

body ........ 0.05 to 0.13 mm (0.002 to 0.005 inch)

g02395400

Illustration 38

Typical example

(3) Tighten the fasteners to the following

torque .............. 31 N · m (23 lb ft)

This document is printed from SPI². Not for RESALE


20

KENR8771

Speci fi cations Section

g02384824

Illustration 40

Typical example

(2) End play of rotor assembly ....... 0.48 to 0.62 mm

(0.019 to 0.024 inch)

g02384878

Illustration 41

Typical example

(3), (4) Tighten the bolts to the following

torque .............. 25 N · m (18 lb ft)

This document is printed from SPI². Not for RESALE


KENR8771

twenty one

Speci fi cations Section

i04193209

Engine Oil Pan

g02383105

Illustration 42

Typical example

(1) Gasket

(2) Gasket

(4) Oil pan

(7) Oil suction tube assembly

This document is printed from SPI². Not for RESALE


twenty two

KENR8771

Speci fi cations Section

g02441976

Illustration 43

Typical example

Tighten the bolts in the sequence that is shown in

illustration 43 to the following torque. .......... 122 N · m

(90 lb ft)

g02442076

Illustration 44

Tighten the bolts in the sequence that is shown in

illustration 44 to the following torque. ............ 63 N · m

(46 lb ft)

(3) Tighten the bolt to the following torque. ... 62 N · m

(46 lb ft)

(5) Tighten the bolts to the following torque: .. 32 N · m

(24 lb ft)

(6) Tighten the oil drain plug to the following

torque ........................ 68 N · m (50 lb ft)

(8) Tighten the bolts to the following torque: .. 27 N · m

(20 lb ft)

Tighten the heater plug for the engine oil pan (if

equipped) to the following torque. ... 68 N · m (50 lb ft)

This document is printed from SPI². Not for RESALE

Partner:
Friendly connection:
beetnic.com 电话:400-100-8969 Copyright Ningbo Rixin Power Technology Co., Ltd. ( beetnic.com ) Tel: 400-100-8969
站点地图 在线客服客服经理手机版浙 ICP 备 09086525 号 -3 " Site Map " Online Customer Service Manager Mobile Version

Copyright: Please do not steal picture information about unauthorized merchants. Once you find unauthorized use of our authorized information, you will be held responsible for copyright, please be careful! Thank you for your cooperation!